
Prof. Stephen Jenks

UCI Electrical Engineering

and Computer Science

& Hiperwall, Inc.

stephen@stephenjenks.com

Ubiquitous Parallel Computing:
Architectures and Programming from GPUs

to the Cloud

Hiperwall Overview

9/28/2009Copyright © 2009 Stephen Jenks2

For more information:

http://hiperwall.calit2.uci.edu

http://hiperwall.com

Outline

 Parallelism Overview

 Thread and OpenMP Programming

 Parallel Microprocessors (Multi-core)

 Architecture Bottlenecks and Solutions

 Asymmetric Parallel Computing

 Cell Processor

 GPUs

 CUDA and OpenCL

 Examples and Performance Benefits

 Cloud Computing with Hadoop

9/28/20093 Copyright © 2009 Stephen Jenks

Overview and Motivation

9/28/20094

 Conventional Parallel Computing Was:
 For scientists with large problem sets

 Complex and difficult

 Very expensive computers with limited access

 Parallel Computing is Becoming:
 Ubiquitous

 Cheap

 Essential

 Different

 Still complex and difficult

 Where Is Parallel Computing Going?

Copyright © 2009 Stephen Jenks

Computing is Changing

9/28/20095

 Parallel programming is essential

 Clock speed not increasing much

 Performance gains require parallelism

 Parallelism is changing

 Special purpose parallel engines

 CPU and parallel engine work together

 Different code on CPU & parallel engine

Asymmetric Computing

Copyright © 2009 Stephen Jenks

Conventional Processor Architecture

9/28/20096

 Hasn’t Changed Much For 40 Years

 Pipelining and Superscalar Since the 1960s

 But has become integrated Microprocessors

 High Clock Speed

 Great performance

 High Power

 Cooling

Issues

 Various

Solutions

From Hennessy & Patterson, 2nd Ed.Copyright © 2009 Stephen Jenks

Parallel Computing Problem

Overview

9/28/20097

Image Relaxation (Blur)

newimage[i][j] = (image[i][j] +

image[i][j-1] + image[i][j+1] +

image[i+1][j] + image[i-1][j]) / 5

Stencil

Copyright © 2009 Stephen Jenks

Shared Memory Multiprocessors

9/28/20098

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

Shared

Memory

• Each CPU computes results for its partition

• Memory is shared so dependences satisfied

CPUs see common address space

Copyright © 2009 Stephen Jenks

Shared Memory Programming

9/28/20099

 Threads

 POSIX Threads

 Windows Threads

 OpenMP

 User-inserted directives to compiler

 Loop parallelism

 Parallel regions

 Visual Studio

 GCC 4.2

Not Integrated with Compiler or Language

No idea if code is in thread or not

Poor optimizations

#pragma omp parallel for

for (i=0; i<n; i++)

a[i] = b[i] * c[i];

Copyright © 2009 Stephen Jenks

Multicore Processors
 Several CPU Cores

Per Chip

 Shared Memory

 Shared Caches (sometimes)

 Lower Clock Speed
 Lower Power & Heat

 But Good Performance

 Program with Threads

 Single Threaded Code
 Not Faster (except on Core i7)

 Majority of Code Today

9/28/200910

Intel Core Duo

AMD Athlon 64 X2
Copyright © 2009 Stephen Jenks

Conventional Processors are

Dinosaurs

 So much circuitry dedicated to keeping ALUs fed:

 Cache

 Out-of-order execution/reorder buffer

 Branch prediction

 Large Register Sets

 Simultaneous Multithreading

 ALU (Arithmetic Logic Unit) tiny by comparison

 Huge power for little performance gain

9/28/200911

With thanks to Stanford’s Pat Hanrahan for the analogy
Copyright © 2009 Stephen Jenks

AMD Phenom X4 Floorplan

9/28/200912
Source: AMD.com

Copyright © 2009 Stephen Jenks

Parallel Microprocessor Problems

 Memory interface too slow for 1 core/thread

 Now multiple threads access memory simultaneously,

overwhelming memory interface

 Parallel programs can run as slowly as sequential ones!

9/28/2009
13

CPU

L
2
 C

a
c
h
e

S
y
s
te

m
/

M
e
m

 I/F

Mem

Then

CPU1

CPU2

L
2
 C

a
c
h
e

S
y
s
te

m
/

M
e
m

 I/F

Mem

Now

Copyright © 2009 Stephen Jenks

SPPM: Producer/Consumer

Parallelism Using The Cache

9/28/200914

Thread 1

Half the Work

Thread 2

Half the Work

Data in Memory

Memory

Bottleneck

Producer

Thread

Consumer

Thread

Data in Memory

Communications

Through Cache

Copyright © 2009 Stephen Jenks

Multicore Architecture Improvements
 Cores in Common Multicore Chips Not Well Connected

 Communicate Through Cache & Memory

 Synchronization Slow (OS-based) or Uses Spin Waits

 Register-Based Synchronization

 Shared Registers Between Cores

 Halt Processor While Waiting To Save Power

 Preemptive Communications (Prepushing)

 Reduces Latency over Demand-Based Fetches

 Cuts Cache Coherence Traffic/Activity

 Software Controlled Eviction

 Manages Shared Caches Using Explicit Operations

 Move Data to Shared Cache Before Needed From Private Cache

 Synchronization Engine

 Hardware-based multicore synchronization operations

9/28/200915 Copyright © 2009 Stephen Jenks

Single Nehalem (Intel I7) Core

9/28/2009Copyright © 2009 Stephen Jenks16

Nehalem - Everything You Need to Know about Intel's New Architecture

http://www.anandtech.com/cpuchipsets/intel/showdoc.aspx?i=3382

Asymmetric Parallel Accelerators

 Current Cores are Powerful and General

 Some Applications Only Need Certain Operations

 Perhaps a Simpler Processor Could Be Faster

 Pair General CPUs with Specialized Accelerators

 Graphics Processing Unit

 Field Programmable

Gate Array (FPGA)

 Single Instruction,

Multiple Data (SIMD)

Processor

9/28/200917

Athlon 64

CPU

ATI

GPU

XBAR

Hyper-

Transport

Memory

Controller

Possible Hybrid

AMD Multi-Core

Design
Copyright © 2009 Stephen Jenks

Cell Broadband Engine

 PowerPC Processing Element with Simultaneous

Multithreading at 3.2 GHz

 8 Synergistic Processing Elements at 3.2 GHz
Optimized for SIMD/Vector processing (100 GFLOPS Total)

256KB Local Storage - no cache

 4x16-byte-wide rings @ 96 bytes per clock cycle

9/28/200918

From IBM Cell

Broadband

Engine

Programmer

Handbook, 10

May 2006

Copyright © 2009 Stephen Jenks

NVIDIA GPU Floorplan

9/28/200919 Source: Dr. Sumit Gupta - NVIDIA

10 multiprocessors

24 threads each

240 simultaneous threads!

Copyright © 2009 Stephen Jenks

Graphics Processing Unit (GPU)

 GPUs Do Pixel Pushing and Matrix Math

9/28/200920

From

NVIDIA CUDA

Compute Unified

Device Architecture

Programming Guide

11/29/2007

Copyright © 2009 Stephen Jenks

CUDA & OpenCL Programming

Model

 Data Parallel

 But not Loop Parallel

 Very Lightweight Threads

 Write Code from Thread’s

Point of View

 No Shared Memory

 Host Copies Data To

and From Device

 Different Memories

 Hundreds of Parallel

Threads (Sort-of

SIMD)
9/28/200921

Block

of

Threads

Copyright © 2009 Stephen Jenks

OpenCL Programming Details

9/28/2009Copyright © 2009 Stephen Jenks22

 Supports GPUs (NVIDIA and ATI) and CPUs

 Built into Apple’s Snow Leopard Mac OS X 10.6

 On-the-fly Compilation

 Supports floats (doubles optional and not supported
on all hardware)

 Pattern:

1. Acquire “device” and get capabilities

2. Initialize (compile) OpenCL “kernel”

3. Move data to “device” memory from “host” memory

4. Set kernel parameters and execution size, start kernel

5. When done, copy results back from device memory

6. Repeat prior 3 steps, as needed

Simple OpenCL Kernel Code

9/28/2009Copyright © 2009 Stephen Jenks23

__kernel void openclmin(__global float *a,

__global float *b, __global float *c)

{

int gid = get_global_id(0);

c[gid] = fmin(a[gid], b[gid]);

}

Get Position In Global

Index Space

100 Iterations in OpenCL:

0.031 secs/iteration (or nearly

6 times faster than sequential!) 0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.174 0.092

0.532 0.577

1.983

1.768

CPU

GPU

Problem size: 24 million element arrays

(or 3*24*4 = 288 Mbytes)

Branch

instead of

fmin()

GPU Performance/Architecture

Issues (CUDA and OpenCL)

9/28/2009Copyright © 2009 Stephen Jenks24

 Avoid branching Memory is fast, but

long latency

 Cache data in shared

space

 Avoid bank conflicts

 Only new GPUs

support Doubles

 Memory limited

(256MB to 4GB vs 16

or 32 GB)

__kernel void openclmin(__global float *a,

__global float *b, __global float *c)

{

int gid = get_global_id(0);

float local_a = a[gid];

float local_b = b[gid];

if (local_a < local_b)

c[gid] = local_a;

else

c[gid] = local_b;

}
Runs 32% slower on GPU than before

GPU Computing is Great, but be aware of the limitations.

GPU Usage on Hiperwall

9/28/2009Copyright © 2009 Stephen Jenks25

 QuickTime renders movies as YUV frames

 16 bits per pixel rather than 32 for RGBA

 Apple OpenGL supports YUV textures natively

 CPU takes 5-8ms to convert 720p frame to RGBA

 Solution GPU computing with Cg

 Modern NVIDIA card – 100 times faster

 Older ATI chip (shared memory) – 15 times faster

 My laptop (Intel GPU w/ shared) – 3 times slower!

GPU Programming Choices

9/28/2009Copyright © 2009 Stephen Jenks26

 CUDA (NVIDIA)
 Mature. Probably best tool support
 Supported on Windows, Linux, Mac
 Only on NVIDIA hardware

 OpenCL (Open standard coalition)
 Stable, but less tool support (for now)
 Built into Mac OS X 10.6, supported on Linux &

Windows
 ATI and NVIDIA hardware

 DirectCompute (Microsoft)
 New, but drivers available
 Built into DirectX 11 (no Mac or Linux support)
 ATI and NVIDIA hardware

Intel Larrabee

9/28/2009Copyright © 2009 Stephen Jenks27

Simple

x86 Core

Simple

x86 Core

Simple

x86 Core

Simple

x86 Core

Simple

x86 Core

Simple

x86 Core

Simple

x86 Core

Simple

x86 Core

Simple

x86 Core

Simple

x86 Core

Coherent

L2 Cache

Coherent

L2 Cache

Coherent

L2 Cache

Coherent

L2 Cache

Coherent

L2 Cache

Coherent

L2 Cache

Coherent

L2 Cache

Coherent

L2 Cache

Coherent

L2 Cache

Coherent

L2 Cache

Interprocessor Ring Network

Many simple, fast, low power, in-order x86 cores

Larrabee: A Many-Core x86 Architecture for Visual Computing

ACM Transactions on Graphics, Vol. 27, No. 3, Article 18, Publication date: August 2008.

M
e
m

o
ry

 &
 I/O

In
te

rfa
c
e
s

Cloud Computing

9/28/2009Copyright © 2009 Stephen Jenks28

 What is cloud computing?

 Latest buzzword in computing

 Replaces Grid, Utility Computing, … as latest craze

 Multiple definitions

 Web-based applications (Google Docs)

 On-demand Computing Resources

 Virtual Machines in a server farm (Amazon, Google, IBM)

 Parallel/Distributed Computing Paradigm to use them

Cloud-Based Map-Reduce

9/28/2009Copyright © 2009 Stephen Jenks29

 Special purpose computation with LOTS of data

 Used by Google and many others

 Based on Lisp’s Map and Reduce functions

 Examples: Distributed Grep, Count of URL Access

Frequency, Reverse Web-Link Graphs, Term-Vector

per Host, Inverted Index, Distributed Sort

 Most produce small results from large input

 Simple computation per element, but lots of them

 Open source implementation: Hadoop

 Yahoo and Apache

 Java-based, includes distributed file system

Cloud (Hadoop) Application

Topology

9/28/2009Copyright © 2009 Stephen Jenks30

MAP

MAP

MAP

MAP

Reduce

Reduce

In
p
u
t

D
a
ta

In
p
u
t

D
a
ta

In
p

u
t

D
a
ta

In
p
u
t

D
a
ta

Key, Value pairs

O
u
tp

u
t D

a
ta

(R
e
s
u
lts

)

Hadoop Word Count Example

9/28/2009Copyright © 2009 Stephen Jenks31

MAP

MAP

MAP

MAP

Reduce

Reduce

In
p
u
t

D
a
ta

In
p

u
t

D
a
ta

In
p
u
t

D
a
ta

In
p
u
t

D
a
ta

Key, Value pairs

O
u
tp

u
t D

a
ta

(R
e
s
u
lts

)

Book text

For each

word, emit

<word, 1> pair

Partitioner

sends data to

right Reduce

based on key

(hash or alpha)

Count how many

of each word

received (add up

the “values” for

each key)

Table of

words and

their counts

Summary

9/28/2009Copyright © 2009 Stephen Jenks32

 Parallel Computing will soon be required for good

performance

 Parallel programming is neither free nor easy

 New tools make it better than before

 Architecture influences performance

 Parallelism at various layers: chip to cloud

 Thread parallelism

 Data-parallelism (top-down view): OpenMP

 Data-parallelism (bottom-up view): GPU programming

 Distributed memory parallelism: Hadoop

Resources

9/28/2009Copyright © 2009 Stephen Jenks33

 HIPerWall: http://hiperwall.calit2.uci.edu/

 Hiperwall, Inc.: http://hiperwall.com/

 Vadlamani, S. & Jenks, S. “Architectural Considerations for Efficient Software
Execution on Parallel Microprocessors,” 21st IEEE International Parallel &
Distributed Processing Symposium, 2007

 Fide, S. & Jenks, S. “Architecture Optimizations for Synchronization and
Communication on Chip Multiprocessors,” Workshop on Multithreaded
Architectures and Applications (MTAAP08) Held in Conjunction With International
Parallel and Distributed Processing Symposium (IPDPS 2008), 2008

 Fide, S. & Jenks, S. “Proactive Use of Shared L3 Caches to Enhance Cache
Communications in Multi-Core Processors,” IEEE Computer Architecture Letters,
2008

 CUDA: http://www.nvidia.com/object/cuda_home.html#

 OpenCL: http://www.khronos.org/opencl/

 OpenMP: http://openmp.org/wp/

 Hadoop: http://hadoop.apache.org/

 OpenCL Tutorials (David Gohara): http://www.macresearch.org/opencl

 Di Blas, A. & Kaldewey, T. Data Monster: Why graphics processors will transform
database processing. IEEE Spectrum, 2009, 46, 46-51

http://hiperwall.calit2.uci.edu/
http://hiperwall.com/
http://www.nvidia.com/object/cuda_home.html
http://www.khronos.org/opencl/
http://openmp.org/wp/
http://hadoop.apache.org/
http://www.macresearch.org/opencl

