
Prof. Stephen Jenks

UCI Electrical Engineering 

and Computer Science

& Hiperwall, Inc.

stephen@stephenjenks.com

Ubiquitous Parallel Computing: 
Architectures and Programming from GPUs 

to the Cloud



Hiperwall Overview

9/28/2009Copyright © 2009 Stephen Jenks2

For more information:

http://hiperwall.calit2.uci.edu

http://hiperwall.com



Outline

 Parallelism Overview

 Thread and OpenMP Programming

 Parallel Microprocessors (Multi-core)

 Architecture Bottlenecks and Solutions

 Asymmetric Parallel Computing

 Cell Processor

 GPUs

 CUDA and OpenCL

 Examples and Performance Benefits

 Cloud Computing with Hadoop

9/28/20093 Copyright © 2009 Stephen Jenks



Overview and Motivation

9/28/20094

 Conventional Parallel Computing Was:
 For scientists with large problem sets

 Complex and difficult

 Very expensive computers with limited access

 Parallel Computing is Becoming:
 Ubiquitous

 Cheap

 Essential

 Different

 Still complex and difficult

 Where Is Parallel Computing Going?

Copyright © 2009 Stephen Jenks



Computing is Changing

9/28/20095

 Parallel programming is essential

 Clock speed not increasing much

 Performance gains require parallelism

 Parallelism is changing

 Special purpose parallel engines

 CPU and parallel engine work together

 Different code on CPU & parallel engine 

Asymmetric Computing

Copyright © 2009 Stephen Jenks



Conventional Processor Architecture

9/28/20096

 Hasn’t Changed Much For 40 Years

 Pipelining and Superscalar Since the 1960s

 But has become integrated  Microprocessors

 High Clock Speed

 Great performance

 High Power

 Cooling 

Issues

 Various

Solutions

From Hennessy & Patterson, 2nd Ed.Copyright © 2009 Stephen Jenks



Parallel Computing Problem 

Overview

9/28/20097

Image Relaxation (Blur)

newimage[i][j] = (image[i][j] +

image[i][j-1] + image[i][j+1] +

image[i+1][j] + image[i-1][j]) / 5

Stencil

Copyright © 2009 Stephen Jenks



Shared Memory Multiprocessors

9/28/20098

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

Shared

Memory

• Each CPU computes results for its partition

• Memory is shared so dependences satisfied

CPUs see common address space

Copyright © 2009 Stephen Jenks



Shared Memory Programming

9/28/20099

 Threads

 POSIX Threads

 Windows Threads

 OpenMP

 User-inserted directives to compiler

 Loop parallelism

 Parallel regions

 Visual Studio

 GCC 4.2

Not Integrated with Compiler or Language

No idea if code is in thread or not

Poor optimizations

#pragma omp parallel for

for (i=0; i<n; i++)

a[i] = b[i] * c[i];

Copyright © 2009 Stephen Jenks



Multicore Processors
 Several CPU Cores 

Per Chip

 Shared Memory

 Shared Caches (sometimes)

 Lower Clock Speed
 Lower Power & Heat

 But Good Performance

 Program with Threads

 Single Threaded Code
 Not Faster (except on Core i7)

 Majority of Code Today

9/28/200910

Intel Core Duo

AMD Athlon 64 X2
Copyright © 2009 Stephen Jenks



Conventional Processors are 

Dinosaurs

 So much circuitry dedicated to keeping ALUs fed:

 Cache

 Out-of-order execution/reorder buffer

 Branch prediction

 Large Register Sets

 Simultaneous Multithreading

 ALU (Arithmetic Logic Unit) tiny by comparison

 Huge power for little performance gain

9/28/200911

With thanks to Stanford’s Pat Hanrahan for the analogy
Copyright © 2009 Stephen Jenks



AMD Phenom X4 Floorplan

9/28/200912
Source: AMD.com

Copyright © 2009 Stephen Jenks



Parallel Microprocessor Problems

 Memory interface too slow for 1 core/thread

 Now multiple threads access memory simultaneously, 

overwhelming memory interface

 Parallel programs can run as slowly as sequential ones!

9/28/2009
13

CPU

L
2
 C

a
c
h
e

S
y
s
te

m
/

M
e
m

 I/F

Mem

Then

CPU1

CPU2

L
2
 C

a
c
h
e

S
y
s
te

m
/

M
e
m

 I/F

Mem

Now

Copyright © 2009 Stephen Jenks



SPPM: Producer/Consumer 

Parallelism Using The Cache

9/28/200914

Thread 1

Half the Work

Thread 2

Half the Work

Data in Memory

Memory

Bottleneck

Producer

Thread

Consumer

Thread

Data in Memory

Communications

Through Cache

Copyright © 2009 Stephen Jenks



Multicore Architecture Improvements
 Cores in Common Multicore Chips Not Well Connected

 Communicate Through Cache & Memory

 Synchronization Slow (OS-based) or Uses Spin Waits

 Register-Based Synchronization

 Shared Registers Between Cores

 Halt Processor While Waiting To Save Power

 Preemptive Communications (Prepushing)

 Reduces Latency over Demand-Based Fetches

 Cuts Cache Coherence Traffic/Activity

 Software Controlled Eviction

 Manages Shared Caches Using Explicit Operations

 Move Data to Shared Cache Before Needed From Private Cache

 Synchronization Engine

 Hardware-based multicore synchronization operations

9/28/200915 Copyright © 2009 Stephen Jenks



Single Nehalem (Intel I7) Core

9/28/2009Copyright © 2009 Stephen Jenks16

Nehalem - Everything You Need to Know about Intel's New Architecture

http://www.anandtech.com/cpuchipsets/intel/showdoc.aspx?i=3382



Asymmetric Parallel Accelerators

 Current Cores are Powerful and General

 Some Applications Only Need Certain Operations

 Perhaps a Simpler Processor Could Be Faster

 Pair General CPUs with Specialized Accelerators

 Graphics Processing Unit

 Field Programmable

Gate Array (FPGA)

 Single Instruction,

Multiple Data (SIMD)

Processor

9/28/200917

Athlon 64

CPU

ATI

GPU

XBAR

Hyper-

Transport

Memory

Controller

Possible Hybrid

AMD Multi-Core

Design
Copyright © 2009 Stephen Jenks



Cell Broadband Engine

 PowerPC Processing Element with Simultaneous 

Multithreading at 3.2 GHz

 8 Synergistic Processing Elements at 3.2 GHz
Optimized for SIMD/Vector processing (100 GFLOPS Total)

256KB Local Storage - no cache

 4x16-byte-wide rings @ 96 bytes per clock cycle

9/28/200918

From IBM Cell 

Broadband 

Engine 

Programmer 

Handbook, 10 

May 2006

Copyright © 2009 Stephen Jenks



NVIDIA GPU Floorplan

9/28/200919 Source: Dr. Sumit Gupta - NVIDIA

10 multiprocessors

24 threads each

240 simultaneous threads!

Copyright © 2009 Stephen Jenks



Graphics Processing Unit (GPU)

 GPUs Do Pixel Pushing and Matrix Math

9/28/200920

From

NVIDIA CUDA 

Compute Unified 

Device Architecture 

Programming Guide

11/29/2007

Copyright © 2009 Stephen Jenks



CUDA & OpenCL Programming 

Model

 Data Parallel

 But not Loop Parallel

 Very Lightweight Threads

 Write Code from Thread’s

Point of View

 No Shared Memory

 Host Copies Data To

and From Device

 Different Memories

 Hundreds of Parallel

Threads (Sort-of 

SIMD)
9/28/200921

Block

of 

Threads

Copyright © 2009 Stephen Jenks



OpenCL Programming Details

9/28/2009Copyright © 2009 Stephen Jenks22

 Supports GPUs (NVIDIA and ATI) and CPUs

 Built into Apple’s Snow Leopard Mac OS X 10.6

 On-the-fly Compilation

 Supports floats (doubles optional and not supported 
on all hardware)

 Pattern:

1. Acquire “device” and get capabilities

2. Initialize (compile) OpenCL “kernel”

3. Move data to “device” memory from “host” memory

4. Set kernel parameters and execution size, start kernel

5. When done, copy results back from device memory

6. Repeat prior 3 steps, as needed



Simple OpenCL Kernel Code

9/28/2009Copyright © 2009 Stephen Jenks23

__kernel void openclmin(__global float *a, 

__global float *b, __global float *c)

{

int gid = get_global_id(0);

c[gid] = fmin(a[gid], b[gid]);

}

Get Position In Global 

Index Space

100 Iterations in OpenCL:

0.031 secs/iteration (or nearly

6 times faster than sequential!) 0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.174 0.092

0.532 0.577

1.983

1.768

CPU

GPU

Problem size: 24 million element arrays

(or 3*24*4 = 288 Mbytes)



Branch

instead of

fmin()

GPU Performance/Architecture 

Issues (CUDA and OpenCL)

9/28/2009Copyright © 2009 Stephen Jenks24

 Avoid branching  Memory is fast, but 

long latency

 Cache data in shared 

space

 Avoid bank conflicts

 Only new GPUs 

support Doubles

 Memory limited 

(256MB to 4GB vs 16 

or 32 GB)

__kernel void openclmin(__global float *a,

__global float *b, __global float *c)

{

int gid = get_global_id(0);

float local_a = a[gid];

float local_b = b[gid];

if (local_a < local_b)

c[gid] = local_a;

else

c[gid] = local_b;

}
Runs 32% slower on GPU than before

GPU Computing is Great, but be aware of the limitations.



GPU Usage on Hiperwall

9/28/2009Copyright © 2009 Stephen Jenks25

 QuickTime renders movies as YUV frames

 16 bits per pixel rather than 32 for RGBA

 Apple OpenGL supports YUV textures natively

 CPU takes 5-8ms to convert 720p frame to RGBA

 Solution GPU computing with Cg

 Modern NVIDIA card – 100 times faster

 Older ATI chip (shared memory) – 15 times faster

 My laptop (Intel GPU w/ shared) – 3 times slower!



GPU Programming Choices

9/28/2009Copyright © 2009 Stephen Jenks26

 CUDA (NVIDIA)
 Mature. Probably best tool support
 Supported on Windows, Linux, Mac
 Only on NVIDIA hardware

 OpenCL (Open standard coalition)
 Stable, but less tool support (for now)
 Built into Mac OS X 10.6, supported on Linux & 

Windows
 ATI and NVIDIA hardware

 DirectCompute (Microsoft)
 New, but drivers available
 Built into DirectX 11 (no Mac or Linux support)
 ATI and NVIDIA hardware



Intel Larrabee

9/28/2009Copyright © 2009 Stephen Jenks27

Simple 

x86 Core

Simple 

x86 Core

Simple 

x86 Core

Simple 

x86 Core

Simple 

x86 Core

Simple 

x86 Core

Simple 

x86 Core

Simple 

x86 Core

Simple 

x86 Core

Simple 

x86 Core

Coherent 

L2 Cache

Coherent 

L2 Cache

Coherent 

L2 Cache

Coherent 

L2 Cache

Coherent 

L2 Cache

Coherent 

L2 Cache

Coherent 

L2 Cache

Coherent 

L2 Cache

Coherent 

L2 Cache

Coherent 

L2 Cache

Interprocessor Ring Network

Many simple, fast, low power, in-order x86 cores

Larrabee: A Many-Core x86 Architecture for Visual Computing

ACM Transactions on Graphics, Vol. 27, No. 3, Article 18, Publication date: August 2008.

M
e
m

o
ry

 &
 I/O

 

In
te

rfa
c
e
s



Cloud Computing

9/28/2009Copyright © 2009 Stephen Jenks28

 What is cloud computing?

 Latest buzzword in computing

 Replaces Grid, Utility Computing, … as latest craze

 Multiple definitions

 Web-based applications (Google Docs)

 On-demand Computing Resources

 Virtual Machines in a server farm (Amazon, Google, IBM)

 Parallel/Distributed Computing Paradigm to use them



Cloud-Based Map-Reduce

9/28/2009Copyright © 2009 Stephen Jenks29

 Special purpose computation with LOTS of data

 Used by Google and many others

 Based on Lisp’s Map and Reduce functions

 Examples: Distributed Grep, Count of URL Access 

Frequency, Reverse Web-Link Graphs, Term-Vector 

per Host, Inverted Index, Distributed Sort

 Most produce small results from large input

 Simple computation per element, but lots of them

 Open source implementation: Hadoop

 Yahoo and Apache

 Java-based, includes distributed file system



Cloud (Hadoop) Application 

Topology

9/28/2009Copyright © 2009 Stephen Jenks30

MAP

MAP

MAP

MAP

Reduce

Reduce

In
p
u
t 

D
a
ta

In
p
u
t 

D
a
ta

In
p

u
t 

D
a
ta

In
p
u
t 

D
a
ta

Key, Value pairs

O
u
tp

u
t D

a
ta

 

(R
e
s
u
lts

)



Hadoop Word Count Example

9/28/2009Copyright © 2009 Stephen Jenks31

MAP

MAP

MAP

MAP

Reduce

Reduce

In
p
u
t 

D
a
ta

In
p

u
t 

D
a
ta

In
p
u
t 

D
a
ta

In
p
u
t 

D
a
ta

Key, Value pairs

O
u
tp

u
t D

a
ta

 

(R
e
s
u
lts

)

Book text

For each 

word, emit 

<word, 1> pair

Partitioner

sends data to 

right Reduce 

based on key 

(hash or alpha)

Count how many 

of each word 

received (add up 

the “values” for 

each key)

Table of 

words and 

their counts



Summary

9/28/2009Copyright © 2009 Stephen Jenks32

 Parallel Computing will soon be required for good 

performance

 Parallel programming is neither free nor easy

 New tools make it better than before

 Architecture influences performance

 Parallelism at various layers: chip to cloud

 Thread parallelism

 Data-parallelism (top-down view): OpenMP

 Data-parallelism (bottom-up view): GPU programming

 Distributed memory parallelism: Hadoop



Resources

9/28/2009Copyright © 2009 Stephen Jenks33

 HIPerWall: http://hiperwall.calit2.uci.edu/

 Hiperwall, Inc.: http://hiperwall.com/

 Vadlamani, S. & Jenks, S. “Architectural Considerations for Efficient Software 
Execution on Parallel Microprocessors,” 21st IEEE International Parallel & 
Distributed Processing Symposium, 2007

 Fide, S. & Jenks, S. “Architecture Optimizations for Synchronization and 
Communication on Chip Multiprocessors,” Workshop on Multithreaded 
Architectures and Applications (MTAAP08) Held in Conjunction With International 
Parallel and Distributed Processing Symposium (IPDPS 2008), 2008

 Fide, S. & Jenks, S. “Proactive Use of Shared L3 Caches to Enhance Cache 
Communications in Multi-Core Processors,” IEEE Computer Architecture Letters, 
2008

 CUDA: http://www.nvidia.com/object/cuda_home.html#

 OpenCL: http://www.khronos.org/opencl/

 OpenMP: http://openmp.org/wp/

 Hadoop: http://hadoop.apache.org/

 OpenCL Tutorials (David Gohara): http://www.macresearch.org/opencl

 Di Blas, A. & Kaldewey, T. Data Monster: Why graphics processors will transform 
database processing. IEEE Spectrum, 2009, 46, 46-51 

http://hiperwall.calit2.uci.edu/
http://hiperwall.com/
http://www.nvidia.com/object/cuda_home.html
http://www.khronos.org/opencl/
http://openmp.org/wp/
http://hadoop.apache.org/
http://www.macresearch.org/opencl

