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Overview and Motivation

9/28/20094

 Conventional Parallel Computing Was:
 For scientists with large problem sets

 Complex and difficult

 Very expensive computers with limited access

 Parallel Computing is Becoming:
 Ubiquitous

 Cheap

 Essential

 Different

 Still complex and difficult

 Where Is Parallel Computing Going?
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Computing is Changing
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 Parallel programming is essential

 Clock speed not increasing much

 Performance gains require parallelism

 Parallelism is changing

 Special purpose parallel engines

 CPU and parallel engine work together

 Different code on CPU & parallel engine 

Asymmetric Computing
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Conventional Processor Architecture
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 Hasn’t Changed Much For 40 Years

 Pipelining and Superscalar Since the 1960s

 But has become integrated  Microprocessors

 High Clock Speed

 Great performance

 High Power

 Cooling 

Issues

 Various

Solutions

From Hennessy & Patterson, 2nd Ed.Copyright © 2009 Stephen Jenks



Parallel Computing Problem 

Overview
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Image Relaxation (Blur)

newimage[i][j] = (image[i][j] +

image[i][j-1] + image[i][j+1] +

image[i+1][j] + image[i-1][j]) / 5

Stencil
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Shared Memory Multiprocessors
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CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

Shared

Memory

• Each CPU computes results for its partition

• Memory is shared so dependences satisfied

CPUs see common address space
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Shared Memory Programming
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 Threads

 POSIX Threads

 Windows Threads

 OpenMP

 User-inserted directives to compiler

 Loop parallelism

 Parallel regions

 Visual Studio

 GCC 4.2

Not Integrated with Compiler or Language

No idea if code is in thread or not

Poor optimizations

#pragma omp parallel for

for (i=0; i<n; i++)

a[i] = b[i] * c[i];
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Multicore Processors
 Several CPU Cores 

Per Chip

 Shared Memory

 Shared Caches (sometimes)

 Lower Clock Speed
 Lower Power & Heat

 But Good Performance

 Program with Threads

 Single Threaded Code
 Not Faster (except on Core i7)

 Majority of Code Today
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Intel Core Duo

AMD Athlon 64 X2
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Conventional Processors are 

Dinosaurs

 So much circuitry dedicated to keeping ALUs fed:

 Cache

 Out-of-order execution/reorder buffer

 Branch prediction

 Large Register Sets

 Simultaneous Multithreading

 ALU (Arithmetic Logic Unit) tiny by comparison

 Huge power for little performance gain
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With thanks to Stanford’s Pat Hanrahan for the analogy
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AMD Phenom X4 Floorplan
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Source: AMD.com
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Parallel Microprocessor Problems

 Memory interface too slow for 1 core/thread

 Now multiple threads access memory simultaneously, 

overwhelming memory interface

 Parallel programs can run as slowly as sequential ones!
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SPPM: Producer/Consumer 

Parallelism Using The Cache
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Thread 1

Half the Work

Thread 2

Half the Work

Data in Memory

Memory

Bottleneck

Producer

Thread

Consumer

Thread

Data in Memory

Communications

Through Cache
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Multicore Architecture Improvements
 Cores in Common Multicore Chips Not Well Connected

 Communicate Through Cache & Memory

 Synchronization Slow (OS-based) or Uses Spin Waits

 Register-Based Synchronization

 Shared Registers Between Cores

 Halt Processor While Waiting To Save Power

 Preemptive Communications (Prepushing)

 Reduces Latency over Demand-Based Fetches

 Cuts Cache Coherence Traffic/Activity

 Software Controlled Eviction

 Manages Shared Caches Using Explicit Operations

 Move Data to Shared Cache Before Needed From Private Cache

 Synchronization Engine

 Hardware-based multicore synchronization operations
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Single Nehalem (Intel I7) Core
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Nehalem - Everything You Need to Know about Intel's New Architecture

http://www.anandtech.com/cpuchipsets/intel/showdoc.aspx?i=3382



Asymmetric Parallel Accelerators

 Current Cores are Powerful and General

 Some Applications Only Need Certain Operations

 Perhaps a Simpler Processor Could Be Faster

 Pair General CPUs with Specialized Accelerators

 Graphics Processing Unit

 Field Programmable

Gate Array (FPGA)

 Single Instruction,

Multiple Data (SIMD)

Processor
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Athlon 64

CPU

ATI

GPU

XBAR

Hyper-

Transport

Memory

Controller

Possible Hybrid

AMD Multi-Core

Design
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Cell Broadband Engine

 PowerPC Processing Element with Simultaneous 

Multithreading at 3.2 GHz

 8 Synergistic Processing Elements at 3.2 GHz
Optimized for SIMD/Vector processing (100 GFLOPS Total)

256KB Local Storage - no cache

 4x16-byte-wide rings @ 96 bytes per clock cycle
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From IBM Cell 

Broadband 

Engine 

Programmer 

Handbook, 10 

May 2006
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NVIDIA GPU Floorplan
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10 multiprocessors

24 threads each

240 simultaneous threads!
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Graphics Processing Unit (GPU)

 GPUs Do Pixel Pushing and Matrix Math
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From

NVIDIA CUDA 

Compute Unified 

Device Architecture 

Programming Guide

11/29/2007
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CUDA & OpenCL Programming 

Model

 Data Parallel

 But not Loop Parallel

 Very Lightweight Threads

 Write Code from Thread’s

Point of View

 No Shared Memory

 Host Copies Data To

and From Device

 Different Memories

 Hundreds of Parallel

Threads (Sort-of 

SIMD)
9/28/200921

Block

of 

Threads
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OpenCL Programming Details
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 Supports GPUs (NVIDIA and ATI) and CPUs

 Built into Apple’s Snow Leopard Mac OS X 10.6

 On-the-fly Compilation

 Supports floats (doubles optional and not supported 
on all hardware)

 Pattern:

1. Acquire “device” and get capabilities

2. Initialize (compile) OpenCL “kernel”

3. Move data to “device” memory from “host” memory

4. Set kernel parameters and execution size, start kernel

5. When done, copy results back from device memory

6. Repeat prior 3 steps, as needed



Simple OpenCL Kernel Code
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__kernel void openclmin(__global float *a, 

__global float *b, __global float *c)

{

int gid = get_global_id(0);

c[gid] = fmin(a[gid], b[gid]);

}

Get Position In Global 

Index Space

100 Iterations in OpenCL:

0.031 secs/iteration (or nearly

6 times faster than sequential!) 0
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Problem size: 24 million element arrays

(or 3*24*4 = 288 Mbytes)



Branch

instead of

fmin()

GPU Performance/Architecture 

Issues (CUDA and OpenCL)
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 Avoid branching  Memory is fast, but 

long latency

 Cache data in shared 

space

 Avoid bank conflicts

 Only new GPUs 

support Doubles

 Memory limited 

(256MB to 4GB vs 16 

or 32 GB)

__kernel void openclmin(__global float *a,

__global float *b, __global float *c)

{

int gid = get_global_id(0);

float local_a = a[gid];

float local_b = b[gid];

if (local_a < local_b)

c[gid] = local_a;

else

c[gid] = local_b;

}
Runs 32% slower on GPU than before

GPU Computing is Great, but be aware of the limitations.



GPU Usage on Hiperwall
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 QuickTime renders movies as YUV frames

 16 bits per pixel rather than 32 for RGBA

 Apple OpenGL supports YUV textures natively

 CPU takes 5-8ms to convert 720p frame to RGBA

 Solution GPU computing with Cg

 Modern NVIDIA card – 100 times faster

 Older ATI chip (shared memory) – 15 times faster

 My laptop (Intel GPU w/ shared) – 3 times slower!



GPU Programming Choices
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 CUDA (NVIDIA)
 Mature. Probably best tool support
 Supported on Windows, Linux, Mac
 Only on NVIDIA hardware

 OpenCL (Open standard coalition)
 Stable, but less tool support (for now)
 Built into Mac OS X 10.6, supported on Linux & 

Windows
 ATI and NVIDIA hardware

 DirectCompute (Microsoft)
 New, but drivers available
 Built into DirectX 11 (no Mac or Linux support)
 ATI and NVIDIA hardware



Intel Larrabee
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Interprocessor Ring Network

Many simple, fast, low power, in-order x86 cores

Larrabee: A Many-Core x86 Architecture for Visual Computing

ACM Transactions on Graphics, Vol. 27, No. 3, Article 18, Publication date: August 2008.
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Cloud Computing
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 What is cloud computing?

 Latest buzzword in computing

 Replaces Grid, Utility Computing, … as latest craze

 Multiple definitions

 Web-based applications (Google Docs)

 On-demand Computing Resources

 Virtual Machines in a server farm (Amazon, Google, IBM)

 Parallel/Distributed Computing Paradigm to use them



Cloud-Based Map-Reduce
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 Special purpose computation with LOTS of data

 Used by Google and many others

 Based on Lisp’s Map and Reduce functions

 Examples: Distributed Grep, Count of URL Access 

Frequency, Reverse Web-Link Graphs, Term-Vector 

per Host, Inverted Index, Distributed Sort

 Most produce small results from large input

 Simple computation per element, but lots of them

 Open source implementation: Hadoop

 Yahoo and Apache

 Java-based, includes distributed file system



Cloud (Hadoop) Application 

Topology
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Hadoop Word Count Example
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Summary
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 Parallel Computing will soon be required for good 

performance

 Parallel programming is neither free nor easy

 New tools make it better than before

 Architecture influences performance

 Parallelism at various layers: chip to cloud

 Thread parallelism

 Data-parallelism (top-down view): OpenMP

 Data-parallelism (bottom-up view): GPU programming

 Distributed memory parallelism: Hadoop
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